\(\left(x-1\right)^2=\left(x-1\right)^5\\ \Rightarrow\left(x-1\right)^2-\left(x-1\right)^5=0\\ \Rightarrow\left(x-1\right)^2\left(1-\left(x-1\right)^3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)^2=0\\1-\left(x-1\right)^3=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x-1=0\\\left(x-1\right)^3=1^3\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=1\\x-1=1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
\(\left(x-1\right)^2=\left(x-1\right)^5\\Ta.có:1^2=1^5;0^2=0^5\\ Vậy:x-1=1.hoặc:x-1=0\\ \Leftrightarrow x=2.hoặc:x=1\)