a)
\(\left(x+1\right)^5=3\\ =>x+1=\sqrt[5]{3}\\ =>x=\sqrt[5]{3}-1\)
b) Xem lại đề
c)
\(5^{x+4}-3\cdot5^{x+3}=2\cdot5^{11}\\
=>5^{x+3}\cdot\left(5-3\right)=2\cdot5^{11}\\
=>5^{x+3}\cdot2=2\cdot5^{11}\\
=>5^{x+3}=5^{11}\\
=>x+3=11\\
=>x=11-3\\
=>x=8\)
d) xem lại đề
e)
\(\dfrac{3}{5}\cdot2^x+\dfrac{7}{5}\cdot2^{x+3}=\dfrac{3}{5}\cdot2^{10}+\dfrac{7}{5}\cdot2^{13}\\ =>2^x\cdot\left(\dfrac{3}{5}+\dfrac{7}{5}\cdot2^3\right)=2^{10}\cdot\left(\dfrac{3}{5}+\dfrac{7}{5}\cdot2^3\right)\\ =>2^x=\dfrac{2^{10}\cdot\left(\dfrac{3}{5}+\dfrac{7}{5}\cdot2^3\right)}{\dfrac{3}{5}+\dfrac{7}{5}\cdot2^3}\\ =>2^x=2^{10}\\ =>x=10\)