`|x^2 -4| + (2y+5)^10 +(4z -3)^20 <= 0(1)`
Ta có `|x^2 -4|>=0 AAx`
` (2y+5)^10>=0 AAy`
`(4z -3)^20 >=0 AA z`
`=>|x^2 -4| + (2y+5)^10 +(4z -3)^20 >=0 AA x;y;z(2)`
`(1)và(2)=> |x^2 -4| + (2y+5)^10 +(4z -3)^20 =0`
`=> {(x^2-4=0),(2y+5=0),(4z-3=0):}`
`=> {(x^2=4),(2y=-5),(4z=3):}`
`=>{(x=+-2),(y=-5/2),(z=3/4):}`
=>x^2-4=0 và 2y+5=0 và 4z-3=0
=>\(\left\{{}\begin{matrix}x\in\left\{2;-2\right\}\\y=-\dfrac{5}{2}\\z=\dfrac{3}{4}\end{matrix}\right.\)