\(x^3\) + 125 + (\(x\) + 5)(\(x\) - 25) = 0
(\(x^3\) + 53) + (\(x\) + 5)(\(x\) - 25) = 0
(\(x\) + 5)(\(x^2\) - 5\(x\) + 25) + (\(x\) + 5)(\(x\) - 25) =0
(\(x\) + 5)(\(x^2\) - 5\(x\) + 25 + \(x\) - 25) = 0
(\(x\) + 5)(\(x^2\) - 4\(x\)) = 0
\(x\)(\(x\) + 5)(\(x\) - 4) = 0
\(\left[{}\begin{matrix}x=0\\x+5=0\\x-4=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=-5\\x=4\end{matrix}\right.\)
`x^3 + 125 + (x + 5)(x - 25) = 0`
`<=>(x + 5)(x^2 + 5x + 25) + (x + 5)(x - 25) = 0`
`<=>(x + 5)(x^2 + 6x) = 0`
`<=>x(x + 5)(x + 6) = 0`
`<=>x = 0` hoặc `x = -5` hoặc `x=-6`
Sửa:
`x^3 + 125 + (x + 5)(x - 25) = 0`
`<=>(x + 5)(x^2 - 5x + 25) + (x + 5)(x - 25) = 0`
`<=>(x+5)(x^2-4x)=0`
`<=>x(x+5)(x-4)=0`
`<=>x=0` hoặc `x=-5` hoặc `x=4`