Lời giải:
Ta có \(2x^2-6xy+9y^2-6x+9=0\)
\(\Leftrightarrow (x^2-6xy+9y^2)+(x^2-6x+9)=0\)
\(\Leftrightarrow (x-3y)^2+(x-3)^2=0\)
Vì \((x-3y)^2; (x-3)^2\geq 0, \forall x,y\in\mathbb{R}\), do đó để \((x-3y)^2+(x-3)^2=0\) thì \(\left\{\begin{matrix} (x-3y)^2=0\\ (x-3)^2=0\end{matrix}\right.\Leftrightarrow x=3; y=1\)
Vậy........
2x2 - 6xy + 9y2 - 6x + 9 = 0
<=> ( x2 - 6xy + 9y2 ) + ( x2 - 6x + 9 ) = 0
<=> ( x - 3y )2 + ( x - 3 )2 = 0
<=> x = 3; y = 1
Vậy x = 3 và y = 1