Tìm số dư r và đa thức thương Q(x) khi thực hiện phép chia f(x)=5x^4–4x^3+2x^2+7x+8 cho g(x)=3x–1
x^2 + 5x + 6=0 b,x^4 + 7x^2 - 8=0
Tìm số nghiệm của phương trình : \(\frac{4x}{x^2-5x+6}+\frac{3x}{x^2-7x+6}=6\)
1)\(7\sqrt{3x-7}+\left(4x-7\right)\sqrt{7-x}=32\)
2)\(4x^2-11x+6=\left(x-1\right)\sqrt{2x^2-6x+6}\)
3)\(9+3\sqrt{x\left(3-2x\right)}=7\sqrt{x}+5\sqrt{3-2x}\)
4)\(\sqrt{2x^2+4x+7}=x^4+4x^3+3x^2-2x-7\)
5)\(\frac{6-2x}{\sqrt{5-x}}+\frac{6+2x}{\sqrt{5+x}}=\frac{8}{3}\)
6)\(2\left(5x-3\right)\sqrt{x+1}+\left(x+1\right)\sqrt{3-x}=3\left(5x+1\right)\)
7)\(\sqrt{7x+7}+\sqrt{7x-6}+2\sqrt{49x^2+7x-42}=181-14x\)
Tìm \(x,y\ge0\) sao cho \(\left(x^2+4y+8\right)\left(y^2+4x+8\right)=\left(3x+5y+4\right)\left(5x+3y+4\right)\)
\(\sqrt{3x^2-7x+3}-\sqrt{x^2-2}=\sqrt{3x^2-5x-1}-\sqrt{x^2-3x+4}\)
Gpt: \(5x^2+3x+6=\left(7x+1\right)\sqrt{x^2+3}\)
giai pt sau
\(\sqrt{3x-1}-\sqrt{x+2}.\sqrt{3x^2+7x+2}+4=4x-2\)
\(x^2-5x+3.\sqrt{2x-1}=2.\sqrt{14-2x}+5\)
\(\left(x+1\right)\left(x+4\right)-3\sqrt{x^2+5x+2}=6\)
\(\sqrt{2X^2+3X-2}-3\sqrt{X+6}=4-\sqrt{2X^2+11X-6}+3\sqrt{X+2}\)
\(\sqrt{3X^2-7X+3}-\sqrt{X^2-2}=\sqrt{3X^2-5X-1}-\sqrt{X^2-3X+4}\)
\(8x^2+\sqrt{3x^2+6x+5}=74-\sqrt{36x-5}\)