1, \(\sqrt{x-1}+\sqrt{x-4}=5\)
2, \(2x-7\sqrt{x}+5=0\)
3, \(\sqrt{2x+1}+\sqrt{x-3}=2\sqrt{x}\)
4, \(x-4\sqrt{x}+2021\sqrt{x-4}+4=0\)
5, \(\sqrt{2x-3}-\sqrt{x+1}=7\left(4-x\right)\)
a. \(\sqrt{\left(2x+3\right)^2}=x+1\)
b. \(\sqrt{\left(2x-1\right)^2}=x+1\)
c. \(\sqrt{x+3}=5\)
d. \(\sqrt{x+2}=\sqrt{7}\)
e. \(5\sqrt{x}=20\)
f. \(\sqrt{x+4}=7\)
g. \(\sqrt{\left(2x+1\right)^2}=3\)
1)\(7\sqrt{3x-7}+\left(4x-7\right)\sqrt{7-x}=32\)
2)\(4x^2-11x+6=\left(x-1\right)\sqrt{2x^2-6x+6}\)
3)\(9+3\sqrt{x\left(3-2x\right)}=7\sqrt{x}+5\sqrt{3-2x}\)
4)\(\sqrt{2x^2+4x+7}=x^4+4x^3+3x^2-2x-7\)
5)\(\frac{6-2x}{\sqrt{5-x}}+\frac{6+2x}{\sqrt{5+x}}=\frac{8}{3}\)
6)\(2\left(5x-3\right)\sqrt{x+1}+\left(x+1\right)\sqrt{3-x}=3\left(5x+1\right)\)
7)\(\sqrt{7x+7}+\sqrt{7x-6}+2\sqrt{49x^2+7x-42}=181-14x\)
\(\sqrt{\left(x-2\right)\left(x+3\right)}=5\)
\(\sqrt{\left(2x+3\right)^2}=x-5\)
\(\sqrt{x^2-6x+9}=x+7\)
\(\sqrt{2x-3}=x-1\)
1.\(x\sqrt{x+\sqrt{x}}-\sqrt{x-\sqrt{x}}=\frac{3}{2}\sqrt{\frac{x}{x+\sqrt{x}}}\)
2.\(\sqrt{x-2+\sqrt{2x-5}}+\sqrt{x+2+3\sqrt{2x-5}}=7\sqrt{2}\)
3.\(\sqrt[4]{x}+\sqrt[4]{17-x}=3\)
4.\(\sqrt[3]{x+1}-\sqrt[3]{x-1}=\sqrt[6]{x^2-1}\)
5.\(\sqrt[3]{2x-1}=x\sqrt[3]{16}-\sqrt[3]{2x+1}\)
giải pt ạ
\(\sqrt{x-2+\sqrt{2x-5}}+\sqrt{x+2+3\sqrt{2x-5}}=7\sqrt{2}\)
Giải phương trình:
a) \(\sqrt{x+8+2\sqrt{x+7}}+\sqrt{x+1-\sqrt{x+7}}=4\)
b)\(\sqrt{x+\sqrt{2x-5}}+\sqrt{x-3\sqrt{2x-5}+2}=2\sqrt{2}\)
Rút gọn biểu thức:
1) \(\sqrt{9-4\sqrt{5}}+\sqrt{\left(25+1\right)^2}\)
2) \(\dfrac{x^2-5}{x+\sqrt{5}}\)
3) \(\dfrac{\sqrt{x^2-2x+1}}{x-1}\)
4) \(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\)
Giải các phương trình sau:
a)\(\sqrt{x^2-3x+5}+\sqrt{x+4}=\sqrt{x^2-x-1}+\sqrt{2x+1}\)
b)\(3\sqrt[3]{x-5}+2\sqrt[3]{x-3}=7\sqrt[6]{\left(x-5\right)\left(x-3\right)}\)
c)\(\sqrt{12-x^3}-\sqrt[3]{2x^2-7}=1\)
d) \(\sqrt[5]{x-2}+\sqrt[7]{x-3}=\sqrt[3]{4-x}\)
e)\(4x^2+\frac{3}{4}=2\sqrt{x}\)