\(\Leftrightarrow\left(x^2+x\right)^2+\left(x^2+x\right)-6=0\)
\(\Leftrightarrow\left(x^2+x+3\right)\left(x^2+x-2\right)=0\)
=>(x+2)(x-1)=0
=>x=-2 hoặc x=1
\(\Leftrightarrow x^4+x^3+x^2+x^3+x^2+x=0\)
\(\Leftrightarrow x^4+2x^3+2x^2+x=0\)
\(\Leftrightarrow x^3\left(x+2\right)+x\left(2+x\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^3+x\right)=0\)
\(\Leftrightarrow x\left(x+2\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow x\left(x+2\right)\left(x+1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\\x=-1\end{matrix}\right.\)
\(\left(x^2+x\right)\left(x^2+x+1\right)=0\)
\(x\left(x+1\right)\left(x^2+x+1\right)=0\)
=> x=0 hoặc x+1=0 (do \(x^2+x+1\ne0\))
x=-1
Vậy...