(\(x\) + 2)n+1 = ( \(x\) + 2)n+11
(\(x+2\))n+1 - ( \(x\) + 2)n+11 = 0
(\(x\) + 2)n+1.( 1 + (\(x\) + 2)10) = 0
(\(x\) + 2)10 + 1 > 0 ∀ \(x\)
=> (\(x\) + 2)n+1 = 0 ⇒ \(x\) + 2 = 0 ⇒ \(x\) = -2
vậy \(x\) = -2
(\(x\) + 2)n+1 = ( \(x\) + 2)n+11
(\(x+2\))n+1 - ( \(x\) + 2)n+11 = 0
(\(x\) + 2)n+1.( 1 + (\(x\) + 2)10) = 0
(\(x\) + 2)10 + 1 > 0 ∀ \(x\)
=> (\(x\) + 2)n+1 = 0 ⇒ \(x\) + 2 = 0 ⇒ \(x\) = -2
vậy \(x\) = -2
a) Tìm số tự nhiên n biết \(\left(n-1\right)^{n+11}-\left(n-1\right)^n=0\)
b) Tìm x biết: \(3\left(x-2\right)-4\left(2x+1\right)-5\left(2x+3\right)=50\)
c) Tìm x biết: \(\left|2x-3\right|=\left|2-x\right|\)
Tìm x biết \(\left(x+2\right)^{n+1}=\left(x+2\right)^{n+11}\)
Cho hàm số y= h(x) = (\(\left(n^2-2\right)x+2\left(n^2-1\right)-3\)Tìm n biết h(3)- 2h(1)= 11
Cứu gấp!!!
1. CMR vs mọi số n nguyên dương đều có:
\(A=5^n\left(5^n+1\right)-6^n\left(3^n+2\right)⋮91\)
2. Cho: \(P\left(x\right)=ax^3+bx^2+cx+d\)
CMR P(x) có giá trị nguyên vs mọi x khi và chỉ khi 6a, 2b, a+b+c và d là số nguyên
3.Cho phân số: \(C=\frac{3\left|x\right|+2}{4\left|x\right|-5}\left(x\in Z\right)\)
a. Tìm x để C đạt giá trj lớn nhất, tìm giá trị lớn nhất đó.
b. Tìm x để C là số tự nhiên.
Cố lên!!!
Cho 2 đa thức \(P\left(x\right)=2x^2+2mx+m^2\)và \(Q\left(x\right)=x^2+4x+5\)
a)Tìm \(m\)biết \(P\left(1\right)=Q\left(-1\right)\)
b)Chứng tỏ rằng đa thức \(Q\left(x\right)\)không có nghiệm
2)Chứng minh rằng không tồn tại số tự nhiên n để \(2018+\left(n+1\right)^2\)là số chính phương
HELP ME!
1.Xác định số tự nhiên x để điều sau đây là đúng:
\(\sqrt{\overline{123...\left(n-1\right)n\left(n-1\right)....321}}=11...1\) (có x chữ số 1)
Tìm số tự nhiên n biết \(\left(n-1\right)^{n+11}-\left(n-1\right)^n=0\)
Biết phàn nguyên của 1 số x, kí hiệu [x] là số nguyên lớn nhất không vượt quá x
CMR với mọi số nguyên dương n ta có \(\left[\frac{n}{2}\right]+\left[\frac{n+1}{2}\right]=n\)
Áp dụng Tìm các số nguyên dương n để n2 + 11n + \(\left[\frac{n}{2}\right]+\left[\frac{n+1}{2}\right]\)là số chính phương
Biết phàn nguyên của 1 số x, kí hiệu [x] là số nguyên lớn nhất không vượt quá x
CMR với mọi số nguyên dương n ta có \(\left[\frac{n}{2}\right]+\left[\frac{n+1}{2}\right]=n\)
Áp dụng Tìm các số nguyên dương n để n2 + 11n + \(\left[\frac{n}{2}\right]+\left[\frac{n+1}{2}\right]\)là số chính phương