Ta có : x2 - 4x + y2 + 2y + 5 = 0
<=> (x2 - 4x + 4) + (y2 + 2y + 1) = 0
<=> (x - 2)2 + (y + 1)2 = 0
Mà (x - 2)2 \(\ge0\forall x\)
(y + 1)2 \(\ge0\forall x\)
Nên \(\orbr{\begin{cases}\left(x-2\right)^2=0\\\left(y+1\right)^2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\y+1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\y=-0\end{cases}}\)
Ok bạn :>
b) x2 + 2y2 + 2xy - 2y + 1 = 0
<=> ( x2 + 2xy + y2 ) + ( y2 - 2y + 1 ) = 0
<=> ( x + y )2 + ( y - 1 )2 = 0
Ta có : \(\hept{\begin{cases}\left(x+y\right)^2\ge0\forall x,y\\\left(y-1\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(x+y\right)^2+\left(y-1\right)^2\ge0\forall x,y\)
Dấu " = " xảy ra <=> \(\hept{\begin{cases}x+y=0\\y-1=0\end{cases}}\Rightarrow\hept{\begin{cases}x+y=0\\y=1\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=1\end{cases}}\)
Vậy giá trị của biểu thức = 0 khi x = -1 ; y = 1
c) x2 + 2y2 + 2xy = 2y - 2
<=> x2 + 2y2 + 2xy - 2y + 1 = -1
<=> ( x2 + 2xy + y2 ) + ( y2 - 2y + 1 ) = -1
<=> ( x + y )2 + ( y - 1 )2 = -1 (*)
Ta có : \(\hept{\begin{cases}\left(x+y\right)^2\ge0\forall x,y\\\left(y-1\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(x+y\right)^2+\left(y-1\right)^2\ge0\forall x,y\)
mà -1 < 0
=> (*) sai
=> Không có giá trị x, y thỏa mãn