\(x^2+2y^2-4x+2y+\dfrac{9}{2}=0\)
\(x^2-4x+4+2y^2+2y+\dfrac{1}{2}=0\)
\(\left(x-2\right)^2+2\left(y+\dfrac{1}{2}\right)^2=0\)
Vì \(\left(x-2\right)^2+2\left(y+\dfrac{1}{2}\right)^2\ge0\forall x,y\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-\dfrac{1}{2}\end{matrix}\right.\)
\(x^2+2y^2-4x+2y+\dfrac{9}{2}=0\)
=>\(x^2-4x+4+2y^2+2y+\dfrac{1}{2}=0\)
=>\(\left(x-2\right)^2+2\left(y^2+y+\dfrac{1}{4}\right)=0\)
=>\(\left(x-2\right)^2+2\left(y+\dfrac{1}{2}\right)^2=0\)
mà \(\left(x-2\right)^2+2\left(y+\dfrac{1}{2}\right)^2>=0\forall x,y\)
nên \(\left\{{}\begin{matrix}x-2=0\\y+\dfrac{1}{2}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-\dfrac{1}{2}\end{matrix}\right.\)