Bài 6: Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
an thuy

tìm x

a\(3x^2-5x=0\)

\(b,x^3-0,36x=0\)

\(c,\left(5x+2\right)^2-\left(3x-1\right)^2=0\)

d\(x^2-10x=-25\)

e\(3\left(x+5\right)-x^2-5x=0\)

f\(\left(x-1\right)^2-2\left(x-1\right)\left(3x+2\right)+\left(3x+2\right)=0\)

Akai Haruma
13 tháng 8 2018 lúc 14:00

a)

\(3x^2-5x=0\Leftrightarrow x(3x-5)=0\)

\(\Rightarrow \left[\begin{matrix} x=0\\ 3x-5=0\rightarrow x=\frac{5}{3}\end{matrix}\right.\)

b)

\(x^3-0,36x=0\Leftrightarrow x(x^2-0,36)=0\)

\(\Leftrightarrow x(x-0,6)(x+0,6)=0\)

\(\Rightarrow \left[\begin{matrix} x=0\\ x-0,6=0\\ x+0,6=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=0\\ x=0,6\\ x=-0,6\end{matrix}\right.\)

c)

\((5x+2)^2-(3x-1)^2=0\)

\(\Leftrightarrow (5x+2-3x+1)(5x+2+3x-1)=0\)

\(\Leftrightarrow (2x+3)(8x+1)=0\)

\(\Rightarrow \left[\begin{matrix} 2x+3=0\\ 8x+1=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{-3}{2}\\ x=\frac{-1}{8}\end{matrix}\right.\)

Akai Haruma
13 tháng 8 2018 lúc 14:04

d)

\(x^2-10x=-25\)

\(\Leftrightarrow x^2-10x+25=0\)

\(\Leftrightarrow x^2-2.5x+5^2=0\Leftrightarrow (x-5)^2=0\)

\(\Rightarrow x=5\)

e)

\(3(x+5)-x^2-5x=0\)

\(\Leftrightarrow 3(x+5)-x(x+5)=0\)

\(\Leftrightarrow (3-x)(x+5)=0\)

\(\Rightarrow \left[\begin{matrix} 3-x=0\rightarrow x=3\\ x+5=0\rightarrow x=-5\end{matrix}\right.\)

f)

\((x-1)^2-2(x-1)(3x+2)+(3x+2)^2=0\)

\(\Leftrightarrow [(x-1)-(3x+2)]^2=0\)

\(\Leftrightarrow (-2x-3)^2=0\Rightarrow -2x-3=0\Rightarrow x=\frac{-3}{2}\)


Các câu hỏi tương tự
Nguyễn Hoàng Linh
Xem chi tiết
Ngọc Thảo
Xem chi tiết
đinh trần xuân hoa
Xem chi tiết
Minh Hiền Tạ Phạm
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Uyên cute
Xem chi tiết
Kathy Nguyễn
Xem chi tiết
Phạm Thị Phương Thảo
Xem chi tiết
Phạm Thị Phương Thảo
Xem chi tiết