6(2x-7)2+14=50
6.(2x-7)2=50-14
6(2x-7)2=36
(2x-7)2=6
=> \(\left[{}\begin{matrix}2x-7=6\\2x-7=-6\end{matrix}\right.\left[{}\begin{matrix}2x=13\\2x=1\end{matrix}\right.\left[{}\begin{matrix}x=\dfrac{13}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)
`6.(2x-7)^2+14=50`
`6.(2x-7)^2=50-14=36`
`(2x-7)^2=36:6=6`
`(2x-7)^2=(\sqrt{6})^2` hoặc `(2x-7)^2=(-\sqrt{6})^2`
`@TH1:2x-7=\sqrt{6}`
`=>2x=\sqrt{6}+7`
`=>x=[\sqrt{6}+7]/2`
`@TH2:2x-7=-\sqrt{6}`
`=>2x=-\sqrt{6}+7`
`=>x=[-\sqrt{6}+7]/2`
Vậy `x in {[+-\sqrt{6}+7]/2}`
6 . (2x - 7)2 + 14 = 50
6 . (2x - 7)2 = 50 - 14
6 . (2x - 7)2 = 36
6 . (2x - 7)2 = 36
(2x - 7)2 = 36 : 6
(2x - 7)2 = 6
<=> 2x - 7 = 6 <=> 2x = 13 <=> x = 13/2
<=> 2x - 7 = - 6 <=> 2x = 1 <=> x = 1/2
đề sai