Đáp án A.
Ta có
z = 2 - 3 i 4 - i 3 + 2 i = - 1 - 4i
Đáp án A.
Ta có
z = 2 - 3 i 4 - i 3 + 2 i = - 1 - 4i
Cho số phức z thỏa mãn phương trình 3 + 2 i z + z - i 2 = 4 + i . Tìm tọa độ điểm M biểu diễn số phức z.
A. M - 1 ; 1
B. M - 1 ; - 1
C. M 1 ; 1
D. M 1 ; - 1
Tìm tọa độ điểm biểu diễn của số phức z biết z = ( 1 + i ) ( 2 + I )
Trong không gian với hệ tọa độ O ; i → ; j → ; k → , cho hai vecto a → = 2 ; − 1 ; 4 , b → = i → − 3 k → . Tính a → . b → .
A. a → . b → = − 11.
B. a → . b → = − 13.
C. a → . b → = 5.
D. a → . b → = − 10.
Trong không gian với hệ tọa độ O ; i → ; j → ; k → , cho hai vectơ a → = 2 ; - 1 ; 4 và b → = i → - 3 k → . Tính a → . b →
A. -10
B. -13
C. 5
D. -11
Cho số phức z = 1 + 3 i . Gọi A,B lần lượt là điểm biểu diễn của các số phức (1+i)z và (3-i)z trong mặt phẳng tọa độ Oxy. Tính độ dài đoạn AB
Cho hàm số y = f(x) có đạo hàm liên tục trên đoạn [1;4], đồng biến trên đoạn [1;4] và thỏa mãn đẳng thức x + 2 x . f x = f ' x , ∀ x ∈ 1 ; 4 Biết rằng f(1)=3/2 tính I = ∫ 1 4 f x d x
A. I=1186/45
B. I=1174/45
C. I=1222/45
D. I=1201/45
Cho số thực a thay đổi và số phức z thỏa mãn z a 2 + 1 = i - a 1 - a a - 2 i . Trên mặt phẳng tọa độ, gọi M là điểm biểu diễn số phức z . Khoảng cách giữa hai điểm M và I (-3; 4) (khi a thay đổi) là:
A. 4
B. 3
C. 5
D. 6
Cho số phức z = a + ( a - 3 )i với a ∈ R . Tìm a để khoảng cách từ điểm biểu diễn của số phức z đến gốc tọa độ là nhỏ nhất
A. 2 3
B. 3 2
C. 3 2
D. 2 3
Cho số phức z thỏa mãn ( 3 + i ) z = 13 − 9 i . Tìm tọa độ của điểm M biểu diễn z.
A. M = ( − 3 ; 4 )
B. M = ( 3 ; − 4 )
C. M = ( − 3 ; − 4 )
D. M = ( 1 ; − 3 )
Cho hai số phức z 1 = 1 + i , z 2 = 2 - 2 i . Tìm tọa độ điểm biểu diễn số phức z = z 1 z 2
A. 1 2 ; 1 2
B. 0 ; 1 2
C. 1 2 ; 0
D. 0 ; 1 4