Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trần Minh Hưng

Tìm tất cả số tự nhiên n, biết rằng: n + S(n) = 2014, trong đó S(n) là tổng các chữ số của n. 

Hoang Hung Quan
12 tháng 3 2017 lúc 9:03

Giải:

Nếu \(n\) là số có ít hơn \(4\) chữ số thì \(\left\{\begin{matrix}n\le999\\S\left(n\right)\le27\end{matrix}\right.\)

\(\Rightarrow n+S\left(n\right)\le999+27=1026< 2014\) (loại)

Mặt khác:

\(n\le n+S\left(n\right)=2014\Rightarrow n\) là số có ít hơn \(5\) chữ số

\(\Rightarrow n\)\(4\) chữ số

\(\Rightarrow S\left(n\right)\le9.4=36\)

Do vậy \(n\ge2014-36=1978\)

\(1978\le n\le2014\Rightarrow\left\{\begin{matrix}n=\overline{19ab}\\n=\overline{20cd}\end{matrix}\right.\)

Nếu \(n=\overline{19ab}\) ta có:

\(\overline{19ab}+\left(1+9+a+b\right)=2014\)

\(\Leftrightarrow1910+11a+2b=2014\Leftrightarrow11a+2b=104\)

\(\Leftrightarrow11a=104-2b\ge104-2.9=86\Rightarrow8\le10< a\)

\(\Leftrightarrow\left\{\begin{matrix}a=8\\b=8\end{matrix}\right.\)\(\Leftrightarrow n=1988\) (thỏa mãn)

Nếu \(n=\overline{20cd}\) ta có:

\(\overline{20cd}+\left(2+0+c+d\right)=2014\)

\(\Leftrightarrow2002+11c+2d=2014\)

\(\Leftrightarrow11c+2d=12\Leftrightarrow11c\le12\)

\(\Leftrightarrow\left[\begin{matrix}c=0\\c=1\end{matrix}\right.\)

Với \(c=0\Leftrightarrow d=6\Leftrightarrow n=2006\) (thỏa mãn)

Với \(c=1\Leftrightarrow2d=1\) (không thỏa mãn)

Vậy \(n=\left\{1988;2006\right\}\)


Các câu hỏi tương tự
tinhyeucuanguoikhac
Xem chi tiết
Lan Trần
Xem chi tiết
Cấn Thu Ngân
Xem chi tiết
Nguyễn Tuấn Minh
Xem chi tiết
Trần Thị Kim Dung
Xem chi tiết
Trần Thị Kim Dung
Xem chi tiết
Dũng Phạm Gia Tuấn
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Nguyễn Văn Vinh
Xem chi tiết