Tìm tất cả các giá trị của tham số a để phương trình a 3 x + 3 − x = 3 x − 3 − x có nghiệm duy nhất
A. -1 < a < 0
B. Không tồn tại a
C. a > 0
D. a ∈ ℝ
Cho phương trình 4 - x - a . log 3 x 2 - 2 x + 3 + 2 - x 2 + 2 x . log 1 3 2 x - a + 2 = 0 . Tập tất cả các giá trị của tham số a để phương trình có 4 nghiệm x 1 ; x 2 ; x 3 ; x 4 thỏa mãn là (c;d). Khi đó giá trị biểu thức T = 2 c + 2 d bằng:
A. 5
B. 2
C. 3
D. 4
Tập tất cả các giá trị của tham số m để phương trình m 1 + x + 1 - x + 3 + 2 1 - x 2 - 5 = 0 có đúng hai nghiệm thức phân biệt là một nửa khoảng (a;b] . Tính b - 5 7 a
A. 6 - 5 2 7
B. 6 - 5 2 35
C. 12 - 5 2 25
D. 12 - 5 2 7
Tập tất cả các giá trị của tham số thực m để phương trình m 1 + x + 1 - x + 3 + 2 1 - x 2 - 5 = 0 có đúng hai nghiệm phân biệt là một nửa khoảng (a;b]. Tính b - 5 7 a
A. 6 - 5 2 35
B. 6 - 5 2 7
C. 12 - 5 2 35
D. 12 - 5 2 7
Cho phương trình m ln 2 x + 1 - x + 2 - m ln x + 1 - x - 2 = 0 1 . Tập tất cả giá trị của tham số m để phương trình 1 có các nghiệm, trong đó có hai nghiệm phân biệt thỏa mãn 0 < x 1 < 2 < 4 < x 2 là khoảng a ; + ∞ . Khi đó, a thuộc khoảng
A. (3,8;3,9)
B. (3,7;3,8)
C. (3,6;3,7)
D. (3,5;3,6)
Tìm tất cả các giá trị của a để bất phương trình sau nghiệm đúng với mọi x.
a . 9 x + a - 1 3 x + 2 + a - 1 > 0
A. a > 1
B. a ≥ 1
C. a < 1
D. a ≤ 1
Cho phương trình m x 2 - 2 x + 2 + 1 - x 2 + 2 x = 0 (m là tham số). Biết rằng tập hợp tất cả các giá trị của tham số m để phương trình trên có nghiệm thuộc đoạn 1 ; 1 + 2 2 là đoạn a , b .Tính giá trị biểu thức T=2b-a.
Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để phương trình log ( ( m - 1 ) . 16 x + 2 . 25 x 5 . 20 x ) - 5 x + 1 . 4 x = ( 1 - m ) 4 2 x - 2 . 25 x có hai nghiệm thực phân biệt. Số phần tử của S bằng
A. 4.
B. 3.
C. 1.
D. 2.
Biết rằng T=[a;b] là tập tất cả các giá trị thực của tham số m để phương trình log 1 3 2 x + log 3 2 + 1 - 1 - 5 m = 0 có ít nhất một nghiệm thuộc khoảng 1 ; 3 2 2 . Tính a 2 + b 2
A. a 2 + b 2 = 4
B. a 2 + b 2 = 6
C. a 2 + b 2 = 8
D. a 2 + b 2 = 10