a) \(128-3\left(x+4\right)=23\)
\(\Rightarrow3\left(x+4\right)=128-23\)
\(\Rightarrow3\left(x+4\right)=105\)
\(\Rightarrow x+4=35\)
\(\Rightarrow x=35-4\)
\(\Rightarrow x=31\)
b) \(\left[\left(4x+28\right)\cdot3+55\right]:5=35\)
\(\Rightarrow\left(4x+28\right)\cdot3+55=35\cdot5\)
\(\Rightarrow\left(4x+28\right)\cdot3+55=175\)
\(\Rightarrow\left(4x+28\right)\cdot3=120\)
\(\Rightarrow4x+28=40\)
\(\Rightarrow4x=12\)
\(\Rightarrow x=3\)
a, \(128-3\left(x+4\right)=23\)
\(=>3\left(x+4\right)=128-23\)
\(=>3\left(x+4\right)=105\)
\(=>x+4=105:3\)
\(=>x+4=35\)
\(=>x=35-4\)
\(=>x=31\)
b, \(\left[\left(4x+28\right).3+55\right]:5=35\)
\(=>\left(4x+28\right).3+55=35.5\)
\(=>\left(4x+28\right).3+55=175\)
\(=>\left(4x+28\right).3=175-55\)
\(=>\left(4x+28\right).3=120\)
\(=>4x+28=120:3\)
\(=>4x+28=40\)
\(=>4x=40-28\)
\(=>4x=12\)
\(=>x=12:4\)
\(=>x=3\)
\(#WendyDang\)
a) 128 - 3 (x + 4) =23
3.( x + 4) = 128 -23
3. ( x + 4) = 105
x + 4 = 105 :3
x + 4 = 35
x = 35 -4
x = 31
`a, 128 - 3(x + 4) = 23`
`3(x + 4) = 128 - 23`
`3(x + 4) = 105`
`x + 4 = 105 : 3`
`x + 4 = 35`
`x = 35 - 4`
`x = 31`
Vậy `x = 31`
-----------------------------------
`b, [(4x + 28) . 3 + 55 ] : 5 = 35`
`(4x + 28) . 3 + 55 = 35 . 5`
`(4x + 28) . 3 + 55 = 175`
`(4x + 28) . 3 = 175 - 55`
`(4x + 28) . 3 = 120`
`4x + 28 = 120 : 3`
`4x + 28 = 40`
`4x = 40 - 28`
`4x = 12`
`x = 12 : 4`
`x = 3`
Vậy `x = 3`