Tìm số tự nhiên \(n\left(50000\le n\le100000\right)\) để 2290 + 7n là lập phương của một số tự nhiên
@Nguyễn Huy Tú, @Ace Legona, @Toshiro Kiyoshi, Akai Haruma, Hung nguyen,... Help me....
Lời giải:
Đặt \(2290+7n=k^3\)
Vì \(50000\leq n\leq 100000\Rightarrow 352290\leq k^3\leq 702290\)
\(\Rightarrow 71\leq k\leq 88\)
Ta thấy \(7n+2290\equiv 1\pmod 7\Rightarrow k^3\equiv 1\pmod 7\)
Xét modulo \(7\) cho $k$ ta thu được \(k\equiv 1, 2,4\pmod 7\)
TH1: \(k=7t+1\Rightarrow 71\leq 7t+1\leq 88\Leftrightarrow 10\leq t\leq 12\)
Thay \(t=10,11,12\) ta thu được \(n\in\left\{50803;67466;87405\right\}\)
TH2: \(k=7t+2\Rightarrow 71\leq 7t+2\leq 88\Rightarrow 10\leq t\leq 12\)
Thay \(t=10,11,12\) ta thu được \(n\in\left\{52994;70107;90538\right\}\)
TH3: \(k=7t+4\Rightarrow 71\leq 7t+4\leq 88\Rightarrow 10\leq t\leq 12\)
Thay \(t=10,11,12\) ta thu được \(n\in\left\{57562;75593;97026\right\}\)
Ta có:
\(50000\le n\le100000\)
\(\Leftrightarrow350000\le7n\le700000\)
\(\Leftrightarrow352290\le2290+7n\le702290\)
Gọi số lập phương đó là \(a^3\left(a\in N\right)\)
\(\Rightarrow352290\le a^3\le702290\)
\(\Leftrightarrow71\le a\le88\)
Bên cạnh đó ta có:
\(2290+7n=a^3\)
\(\Leftrightarrow n=\dfrac{a^3-2290}{7}=-327+\dfrac{a^3-1}{7}=\dfrac{\left(a-1\right)\left(a^2+a+1\right)}{7}-327\)
Giờ tìm a sao cho thỏa \(\left[{}\begin{matrix}a-1⋮7\\a^2+a+1⋮7\end{matrix}\right.\)và \(71\le a\le88\)là xong