\(9< 3^n< 243\)
\(\Rightarrow3^2< 3^n< 3^5\)
\(\Rightarrow2< n< 5\)
\(\Rightarrow n\in\left\{3;4\right\}\)
__________
\(4^3\cdot2^{n+1}=1\)
\(\Rightarrow\left(2^2\right)^3\cdot2^{n+1}=1\)
\(\Rightarrow2^6\cdot2^{n+1}=2^0\)
\(\Rightarrow2^{n+7}=2^0\)
\(\Rightarrow n+7=0\)
\(\Rightarrow n=-7\)
___________
\(8\le2^{n+1}\le64\)
\(\Rightarrow2^3\le2^{n+1}\le2^6\)
\(\Rightarrow3\le n+1\le6\)
\(\Rightarrow3-1\le n\le6-1\)
\(\Rightarrow2\le n\le5\)
\(\Rightarrow n\in\left\{2;3;4;5\right\}\)
a: \(9< 3^n< 243\)
=>\(3^2< 3^n< 3^5\)
=>2<n<5
mà n là số tự nhiên
nên \(n\in\left\{3;4\right\}\)
b: \(4^3\cdot2^{n+1}=1\)
=>\(2^{n+1}\cdot2^6=2^0\)
=>\(2^{n+1+6}=2^0\)
=>n+7=0
=>n=-7(loại)
c: \(8< =2^{n+1}< =64\)
=>\(2^3< =2^{n+1}< =2^6\)
=>3<=n+1<=6
=>2<=n<=5
mà n là số tự nhiên
nên \(n\in\left\{2;3;4;5\right\}\)