\(p^2+a^2=b^2\Leftrightarrow p^2=b^2-a^2\)
\(\Leftrightarrow p^2=\left(b-a\right)\left(b+a\right)\) (1)
Do p là số nguyên tố và \(b+a>b-a\) nên (1) tương đương:
\(\left\{{}\begin{matrix}b-a=1\\b+a=p^2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{p^2-1}{2}\\p=\dfrac{p^2+1}{2}\end{matrix}\right.\)
Vậy nghiệm của pt có dạng \(\left(p;a;b\right)=\left(p;\dfrac{p^2-1}{2};\dfrac{p^2+1}{2}\right)\) với mọi \(p>3\) và p nguyên tố