x2 + y2 = 2x2y2
<=> 2x2 + 2y2 - 4x2y2 = 0
<=> 2x2(1 - 2y2) - (1 - 2y2) = -1
<=> (2x2 - 1)(2y2 - 1) = 1 = 1.1
Lập bảng:
2x2 - 1 | 1 | -1 |
2y2 - 1 | 1 | -1 |
x | \(\pm\)1 | 0 |
y | \(\pm\)1 | 0 |
Vậy ...
x2 + y2 = 2x2y2
<=> 2x2 + 2y2 - 4x2y2 = 0
<=> 2x2(1 - 2y2) - (1 - 2y2) = -1
<=> (2x2 - 1)(2y2 - 1) = 1 = 1.1
Lập bảng:
2x2 - 1 | 1 | -1 |
2y2 - 1 | 1 | -1 |
x | \(\pm\)1 | 0 |
y | \(\pm\)1 | 0 |
Vậy ...
tìm nghiệm nguyên của pt:(y+2)x2+1=y2
giải pt nghiệm nguyên: x2(1-y0+xy+y2=0
Bài 1: Cho pt x2 + 13x -1 = 0 (1). Không giải pt, hãy lập một pt bậc hai có các nghiệm y1, y2 lớn hơn nghiệm của pt (1) là 2.
Bài 2: Cho pt x2 - 5x + 6 = 0 (1). Không giải pt, hãy lập pt bậc hai có các nghiệm y1 và y2 là:
a/ Số đối các nghiệm của pt (1).
b/ Nghịch đảo các nghiệm của pt (1).
Tìm nghiệm nguyên của phương trình : x2 - xy +y2 = x-y
Tìm các nghiệm nguyên của phương trình sau: 7(x2+y2) = 25(x+y)
Cho pt : \(x^2-2\left(m-1\right)x+2m-5=0\)
a/ Tìm m để pt có nghiệm dương
b/ Gọi x1 , x2 là nghiệm của pt . tìm m nguyên dương để \(A=\left(\frac{x1}{x2}\right)^2+\left(\frac{x2}{x1}\right)^2\)là số nguyên
Tìm giải phương trình nghiệm nguyên : x2 = y2
Cho pt bậc 2 ẩn x: x2 + 3x + m = 0. a) Giải pt (1) khi m = 0; m = -4. b) Tìm m để pt (1) vô nghiệm. c) Tìm m để pt (1) có một nghiệm là -1. Tìm nghiệm kia. d) Cho x1, x2 là 2 nghiệm của pt (1). Không giải pt, hãy tìm giá trị của m để: 1/ x1^2 + x2^2=34 2/ x1 - x2=6 3/ x1=2x2 4/ 3x1+2x2=20 5/ x1^2-x2^2=30.
Cho pt: 3x2+5x-6=0 có 2 nghiệm x1, x2. Lập pt bậc 2 nhận 2 số y1=x1+\(\frac{1}{x2}\), y2=x2+\(\frac{1}{x1}\)làm nghiệm