Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lê Ng Hải Anh

Tìm nghiệm nguyên cua phương trình: \(x^2+2y^2+2xy+3y-4=0\)

alibaba nguyễn
16 tháng 1 2019 lúc 8:51

\(x^2+2xy+y^2+3y-4=0\)

\(\Rightarrow\Delta'=y^2-\left(2y^2+3y-4\right)\ge0\)

\(\Leftrightarrow-4\le y\le1\)

cao van duc
16 tháng 1 2019 lúc 18:10

\(\left(x+y\right)^2+\left(y-\frac{3}{2}\right)^2=4\)

mà 4=0^2+2^2

=>\(\orbr{\begin{cases}\hept{\begin{cases}x+y=0\\y-\frac{3}{2}=2\end{cases}}\\\hept{\begin{cases}x+y=2\\y-\frac{3}{2}=0\end{cases}}\end{cases}}\)

=> giải nốt

Pham Van Hung
16 tháng 1 2019 lúc 18:57

\(x^2+2y^2+2xy+3y-4=0\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(y^2+3y+\frac{9}{4}\right)-\frac{25}{4}=0\)

\(\Leftrightarrow\left(x+y\right)^2+\left(y+\frac{3}{2}\right)^2=\frac{25}{4}\)

\(\Leftrightarrow\left(2x+2y\right)^2+\left(2y+3\right)^2=25\)

Ta có 4 trường hợp: 

TH1: \(\hept{\begin{cases}2x+2y=0\\2y+3=5\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=0\\y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=1\end{cases}}\)

TH2: \(\hept{\begin{cases}2x+2y=0\\2y+3=-5\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=-4\end{cases}}\)

TH3: \(\hept{\begin{cases}2x+2y=4\\2y+3=-3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=5\\y=-3\end{cases}}\)

TH4: \(\hept{\begin{cases}2x+2y=4\\2y+3=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=0\end{cases}}\)

TH5: \(\hept{\begin{cases}2x+2y=-4\\2y+3=-3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-3\end{cases}}\)

TH6: \(\hept{\begin{cases}2x+2y=-4\\2y+3=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-2\\y=0\end{cases}}\)


Các câu hỏi tương tự
Lê Ng Hải Anh
Xem chi tiết
Ngô Minh Tâm
Xem chi tiết
Hày Cưi
Xem chi tiết
Hày Cưi
Xem chi tiết
Yim Yim
Xem chi tiết
Ngô Minh Sơn
Xem chi tiết
karry vương
Xem chi tiết
Phạm Huy Hoàng
Xem chi tiết
Cầm Dương
Xem chi tiết