Áp dụng BĐT Bunhiacopxki :
(a2 + b2 + c2)2 = (1.a2 + 1.b2 + 1.c2)
≤ (12 + 12 + 12)[ (a2)2 + (b2)2 + (c2)2 ]
= 3(a4 + b4 + c4)
⇒ n = 3
Áp dụng BĐT Bunhiacopxki :
(a2 + b2 + c2)2 = (1.a2 + 1.b2 + 1.c2)
≤ (12 + 12 + 12)[ (a2)2 + (b2)2 + (c2)2 ]
= 3(a4 + b4 + c4)
⇒ n = 3
a) cho a,b,c thỏa mãn a > c và b > c > 0. tìm số n nhỏ nhất để có bất đẳng thức sau :
\(\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\le n\sqrt{ab}\)
b) CMR với mọi số nguyên dương n
\(\sqrt{1}+\sqrt{2}+\sqrt{3}+...+\sqrt{n}\le n\sqrt{\frac{n+1}{2}}\)
Tìm số nguyên dương n lớn nhất để bất đẳng thức sau thỏa mãn
\(\frac{1}{\sqrt[n]{\left(na+b+c\right)^4}}+\frac{1}{\sqrt[n]{\left(a+nb+c\right)^4}}+\frac{1}{\sqrt[n]{\left(a+b+nc\right)^4}}\le\frac{3}{16}\)
trong đó a,b,c là các số thực dương thỏa mãn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le a+b+c\)
Cho \(M_1=\left(\sqrt{a}+\sqrt{b}-\sqrt{c}\right)^2\left(\sqrt{b}+\sqrt{c}-\sqrt{a}\right)^2\left(\sqrt{c}+\sqrt{a}-\sqrt{b}\right)^2\)
\(M_2=\left(\sqrt[4]{a}+\sqrt[4]{b}-\sqrt[4]{c}\right)^4\left(\sqrt[4]{b}+\sqrt[4]{c}-\sqrt[4]{a}\right)^4\left(\sqrt[4]{c}+\sqrt[4]{a}-\sqrt[4]{b}\right)^4\)
\(...\)
\(M_n=\left(\sqrt[2^n]{a}+\sqrt[2^n]{b}-\sqrt[2^n]{c}\right)^{2^n}\left(\sqrt[2^n]{b}+\sqrt[2^n]{c}-\sqrt[2^n]{a}\right)^{2^n}\left(\sqrt[2^n]{c}+\sqrt[2^n]{a}-\sqrt[2^n]{b}\right)^{2^n}\)
Với \(n\inℕ^∗\). CMR: \(\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\le M_1\le M_2\le...\le M_n\le abc\)
Chứng minh rằng với mọi số thực không âm \(a,b,c\) thỏa mãn không có hai số nào trong chúng có thể đồng thời bằng \(0\), bất đẳng thức sau luôn được thỏa mãn:
\(\frac{a}{a^2+3bc}+\frac{b}{b^2+3ca}+\frac{c}{c^2+3ab}\le\frac{\left(a+b+c\right)^3}{4\left(ab+bc+ca\right)^2}\)
CM bất đẳng thức :
5) \(a^4+b^4+2\ge4ab\)
6)\(\left(\frac{a+b}{2}+\frac{c+d}{2}\right)^2\ge\left(a+c\right)\left(b+d\right)\)
Có bao nhiêu số nguyên n thoả mãn các bất đẳng thức \(\left(n-3\right)^2\)\(-\left(n-4\right)\left(n+4\right)\) là nhỏ hơn 3?
Chứng minh bất đẳng thức
\(a\left(a+b\right)\left(a+b+c\right)+b^2c^2\ge0\)
\(\left(a^2+b^2\right)\left(a^4+b^4\right)\ge\left(a^3+b^3\right)^2\)
\(\left(a+b\right)\left(a^3+b^3\right)\le2\left(a^4+b^{\text{4}}\right)\)
Cho ab+bc+ca=1. Tìm gia trị nhỏ nhất của:\(P=\frac{a^8}{\left(a^4+b^4\right)\left(a^2+b^2\right)}+\frac{b^8}{\left(b^4+c^4\right)\left(b^2+c^2\right)}+\frac{c^8}{\left(c^4+a^4\right)\left(c^2+a^2\right)}\)
ta có:\(ab+bc+ac=abc\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)
Áp dụng BĐT :\(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)ta có:
\(\frac{1}{2a+b+c}=\frac{1}{\left(a+c\right)+\left(a+b\right)}\le\frac{1}{4}\left(\frac{1}{a+b}+\frac{1}{a+c}\right).\)\(\le\frac{1}{4}\left(\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{1}{4}\left(\frac{1}{a}+\frac{1}{c}\right)\right)=\frac{1}{16}\left(\frac{2}{a}+\frac{1}{b}+\frac{1}{c}\right).\)
Tương tự ta có :\(\frac{1}{a+2b+c}\le\frac{1}{16}\left(\frac{1}{a}+\frac{2}{b}+\frac{1}{c}\right);\frac{1}{a+b+2c}\le\frac{1}{16}\left(\frac{1}{a}+\frac{1}{b}+\frac{2}{c}\right).\)
Cộng ba BĐT lại ta có:
\(Q\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{1}{4}.\)
Đẳng thức xảy ra khi \(a=b=c=3\).Max=\(\frac{1}{4}\)