Gọi d là ƯCLN ( 18n+3; 21n+7 )
\(\Leftrightarrow\left\{{}\begin{matrix}18n+3⋮d\\21n+7⋮d\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(18n+3\right):3⋮d\\\left(21n+7\right):7⋮d\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}6n+1⋮d\\3n+1⋮d\end{matrix}\right.\) ( chia vào )
\(\Leftrightarrow\left\{{}\begin{matrix}6n+1⋮d\\6n+2⋮d\end{matrix}\right.\)
Vì 6n+1 và 6n+2là 2 STN liên tiếp nên d=1
=> 18n+3 và 21n+7 là 2 SNT cùng nhau ( với mọi n )
-Gọi \(a\) là ƯCLN của \(18n+3\) và \(21n+7\)\(\left(a\in Nsao\right)\).
-Ta có: \(\left(18n+3\right)⋮a\)
\(\Rightarrow\)\(\left(6n+1\right)⋮a\).
-Ta có: \(\left(21n+7\right)⋮a\)
\(\Rightarrow\left(3n+1\right)⋮a\)
\(\Rightarrow\left(6n+2\right)⋮a\)
\(\Rightarrow\left[\left(6n+2\right)-\left(6n+1\right)\right]⋮a\)
\(\Rightarrow1⋮a\)
\(\Rightarrow a=1\).
-Vậy với mọi giá trị của n thì \(18n+3\) và \(21n+7\) là các SNT cùng nhau.
Gọi d là ƯC(\(18n+3;21n+7\))
⇒ \(\left\{{}\begin{matrix}\left(18n+3\right)⋮d\\\left(21n+7\right)⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left(6n+1\right)⋮d\\\left(3n+1\right)⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left(6n+1\right)⋮d\\\left(6n+2\right)⋮d\end{matrix}\right.\)
\(\Rightarrow\left[\left(6n+2\right)-\left(6n+1\right)\right]⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
⇒(18n+3) và (21n+7) là hai SNT cùng nhau