Để \(\dfrac{6}{n-1}\) thì 6⋮n-1
n-1∈Ư(6)
Ư(6)={1;-1;2-2;3;-3;-6;6}
n∈{2;0;3;-1;4;-2;-5;7}
\(\dfrac{6}{n-1}\) là số nguyên dương\(\Leftrightarrow6⋮\left(n-1\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}n-1=1\\n-1=2\\n-1=3\\n-1=6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n=2\\n=3\\n=4\\n=7\end{matrix}\right.\)
Để n có giá trị nguyên
\(\Leftrightarrow n-1\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)
\(\Rightarrow n=\left\{-5;-2;-1;0;2;3;4;7\right\}\)
Để phân số 6/n-1 có giá trị nguyên thì \(n-1\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
hay \(n\in\left\{2;0;3;-1;4;-2;7;-5\right\}\)