Đặt \(A=\sqrt{-x^2+2x+4}\)
Ta có \(A\ge0\) theo tính chất căn thức
\(\Rightarrow A_{min}=0\) khi \(-x^2+2x+4=0\Rightarrow x=1\pm\sqrt{5}\)
\(A=\sqrt{-x^2+2x-1+5}=\sqrt{5-\left(x-1\right)^2}\le\sqrt{5}\)
\(\Rightarrow A_{max}=\sqrt{5}\) khi \(x=1\)
\(-x^2+2x-1=-\left(x-1\right)^2\le0\)
\(\Rightarrow-x^2+2x-1+5\le5\)
\(\Rightarrow-x^2+2x+4\le5\)
\(\Rightarrow\sqrt{-x^2+2x+4}\le\sqrt{5}\)
mà \(\sqrt{-x^2+2x+4}\ge2\)
Vậy \(GTLN=\sqrt{5};GTNN=2\)