Cho 1/x+ 1/y + 1/z=2010 và x,y,z dương tìm gtln của biểu thức p=1/2x+y+z + 1/x+2y+z + 1/x+y+2z
tìm gt nhỏ nhất biết A=1/x+2y +1/y+2z +1/z+2x với x,y,z>0, x+y+z=6
Cho x,y,z > 0 và x^2 + y^2 + z^2 = 3. Tìm min của:
\(P=\dfrac{x^3}{x+y}+\dfrac{y^3}{y+z}+\dfrac{z^3}{z+x} \)
\(Q=\dfrac{x^3+y^3}{x+2y}+\dfrac{y^3+z^3}{y+2z}+\dfrac{z^3+x^3}{z+2x}\)
\(\frac{x+y}{2z}=\frac{y+z-1}{2x}=\frac{z+x+1}{2y}=\frac{5}{x+y+z}\)
Tìm x,y,z
Cho x,y,z dương thoả xyz=1.chứng minh x^2y^2/(2x^2+y^2+3x^2y^2) + y^2z^2/(2y^2+z^2+3y^2z^2) + z^2x^2/2z^2+x^2+3z^2x^2 <= 1/2
help
Cho x,y,z>0.Tìm Min A=\(\frac{x}{y+2z}+\frac{y}{z+2x}+\frac{z}{x+2y}\)
cho x,y,z là 3 cạnh của 1 tam giác , CMR :
2x^2y^2+2^2z^2+2z^2x^2-x^4-y^4-z^4>0
Cho x,y,z là các số dương thỏa mãn \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2020\). Tìm giá trị lớn nhất của:
\(P=\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\)
Cho 1/x +1/y +1/z=6,x,y,z là các số thực dương.Chứng minh 1/2x+y+z +1/x+2y+z +1/x+y+2z<=3/2