a)\(y=\sqrt{-x^2+2x-1+2}=\sqrt{-\left(x^2-2x+1\right)+2}\)
\(=\sqrt{-\left(x-1\right)^2+2}\)
Dễ thấy: \(-\left(x-1\right)^2\le0\Rightarrow-\left(x-1\right)^2+2\le2\)
\(\Rightarrow y=\sqrt{-\left(x-1\right)^2+2}\le\sqrt{2}\)
Đẳng thức xảy ra khi \(x=1\)
b)\(y=2-\sqrt{4x^2-4x+1}\)
\(=2-\sqrt{\left(2x-1\right)^2}\)
Dễ thấy: \(\sqrt{\left(2x-1\right)^2}\ge0\Rightarrow-\sqrt{\left(2x-1\right)^2}\le0\)
\(y=2-\sqrt{4x^2-4x+1}\le2\)
Đẳng thức xảy ra khi \(x=\frac{1}{2}\)