1. Cho A=\(\frac{3}{2+\sqrt{2x-x^2}+3}\)
a. Tìm x để A có nghĩa
b. Tìm Min(A), Max(A)
2/ Tìm Min, Max của: \(A=\frac{1}{2+\sqrt{x-x^2}}\)
3/ Tìm Min(B) biết: \(B=\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\)
4/ Tìm Min, Max của:\(C=\frac{4x+3}{x^2+1}\)
5/ Tìm Max của: \(A=\sqrt{x-1}+\sqrt{y-2}\)biết \(x+y=4\)
6/ Tìm Max(B) biết: \(B=\frac{y\sqrt{x-1}+x\sqrt{y-2}}{xy}\)
7/ Tìm Max(C) biết: \(C=x+\sqrt{2-x}\)
1. Tìm max
\(M=\dfrac{yz\sqrt{x-1}+zx\sqrt{y-2}+xy\sqrt{z-3}}{xyz}\)
2. Cho a,b,c >0 và a+b+c=\(\sqrt{2}\)
Tìm max \(N=\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\)
giải hộ em
a,Tìm min, max: 4x-16 căn x+4y-22 căn y-4 căn xy+36
b, tìm max :B= 6 cẵn+3/2x+4
c, Tìm Min : C=2/1-x+1/x
1. Cho a,b,c>0 và a^2000+b^2000+c^2000=3. Tìm max P=a^2+b^2+c^2
2. Cho a,b,c là 3 cạnh tam giác. Tìm max \(A=\left(3-\frac{b+c}{a}\right)\left(3-\frac{c+a}{b}\right)\left(3-\frac{a+b}{c}\right)\)
a) Tìm min max A = \(\frac{4x+3}{x^2+1}\)
b) Cho x + y = 15 Tìm min max B = \(\sqrt{x-4}+\sqrt{y-3}\)
Cho (P): y = x2 , (d): y = (m-1)x + 4
(d) giao (P) tại 2 điểm phân biệt A,B
a) Tìm C trên \(\widebat{AB}\)nhỏ để S \(\Delta ABC\)max
b) Tìm m để \((\frac{x_1}{x_2})^3+(\frac{x_2}{x_1})^3\) max
1. cho A=x^2(x+4) tìm gtnn của a KHI x>=2
2. Cho x>=4 X+y>=6
img gtnn của B=x^2 +y^2
3. a,b>0 a+b=1 max c=ab (a^2+b^2)
cho các số thực,a,b,c thay đổi thỏa mãn
x+a+b+c=7 và x^2+a^2+b^2+c^2=13.
tìm min, max của x
Tìm min, max của \(\dfrac{a}{b^2+c^2+1}+\dfrac{b}{c^2+a^2+1}+\dfrac{c}{a^2+b^2+1}\) biết a+b+c=3