Cho hs
\(f\left(x\right)=-\dfrac{mx^3}{3}+3x^2-mx+1\)
tìm m để
a) \(f'\left(x\right)\le0,\forall x\in R\)
b) pt\(f'\left(x\right)=0\) có 2 nghiệm âm phân biệt
Tìm tham số m để hàm số sau xác định trên R
1/
3/
Xác định tính chẵn lẻ của hs sau
y = \(\dfrac{cosx}{2}\)
Tìm tham số m để hàm số sau xác định trên R
1/
2/
3/
Tìm TXĐ các hàm số:
a, y = sin \(2-\sqrt{x-1}\)
b, y = \(\dfrac{tanx}{cos2x+1}\)
c, y = \(\sqrt{cosx}\)
B1: tìm m để pt có nghiệm: \(4\sqrt{-x^2+3x+4}+3x+4=m\left(2\sqrt{x+1}+\sqrt{4-x}\right)\)
b2: \(y=2x^2-3\left(m+1\right)x+m^2+3m-2\) tìm m để gtnn của hàm số là gt lớn nhất
Tìm tham số m để hàm số sau xác định trên R
1/ \(y=\sqrt{cos^2x+cosx-2m+1}\)
2/ \(y=\sqrt{cos2x-2cosx+m}\)
3/ \(y=\sqrt{sin^4x+cos^4x-sin2x-m}\)
Biết \(sinx=\dfrac{-2\sqrt{5}}{5},cosx=\dfrac{1}{\sqrt{5}},tanx=-2\). Tính giá trị của biểu thức: M = \(sin\left(\dfrac{\pi}{2}-x\right).cot\left(\pi+x\right)\)
Xét tính chẵn lẻ của hs sau: y=\(\sqrt{2}\)sin(x+pi/4)