\(y=\sqrt{2}sin\left(x+\dfrac{\text{π}}{4}\right)\)
\(=\sqrt{2}sinx.cos\dfrac{\text{π}}{4}+\sqrt{2}sin\dfrac{\text{π}}{4}.cosx\)
\(=\sqrt{2}sinx.\dfrac{\sqrt{2}}{2}+\sqrt{2}.\dfrac{\sqrt{2}}{2}+cosx\)
\(=sinx+cosx\)
Tập xác định của hàm số là \(D=R\)
\(\forall x\in D\) thì \(-x\in D\)
Ta có: \(f\left(-x\right)=sin\left(-x\right)+cos\left(-x\right)=-sinx+cosx\ne f\left(x\right)\)
Hàm y không chẵn cũng không lẻ