Hệ ptr vô nghiệm `<=>[m+2]/[m-1]=2/[-1] \ne [m-3]/[m+5]`
`<=>{(-m-2=2m-2),(2m+10 \ne 3-m):}`
`<=>{(m = 0),(m \ne -7/3):}<=>m=0`
Hệ ptr vô nghiệm `<=>[m+2]/[m-1]=2/[-1] \ne [m-3]/[m+5]`
`<=>{(-m-2=2m-2),(2m+10 \ne 3-m):}`
`<=>{(m = 0),(m \ne -7/3):}<=>m=0`
Cho hệ phương trình \(\left\{{}\begin{matrix}x+y=m\\x+\left(m+1\right)y=1\end{matrix}\right.\)
Tìm m để hệ có nghiệm duy nhất (x;y) thỏa mãn x+2y>0
Cho hệ phương trình \(\left[{}\begin{matrix}x+y=m\\x+\left(m+1\right)y=1\end{matrix}\right.\)
Tìm m để hệ có nghiệm duy nhất (x;y) thỏa mãn x+2y>0
Cho hệ phương trình \(\left\{{}\begin{matrix}x+y=m\\x+\left(m+1\right)y=1\end{matrix}\right.\)
Tìm m để hệ có nghiệm duy nhất (x;y) thỏa mãn x+2y>0
Bài 2 : Cho hệ phương trình:
\(\left\{{}\begin{matrix}mx+y=5\left(1\right)\\2mx+3y=6\left(2\right)\end{matrix}\right.\)
Tìm m để hệ có nghiệm duy nhất(x;y) thỏa mãn:
(2m - 1)x + (m + 1)y = m (3)
cho hệ phương trình \(\left\{{}\begin{matrix}x+my=m+1\\mx+y=2m\end{matrix}\right.\)(m là tham số ).Tìm m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn \(\left\{{}\begin{matrix}x\ge2\\y\ge1\end{matrix}\right.\)
Tìm các giá trị của m để hệ phương trình sau vô nghiệm:
\(\left\{{}\begin{matrix}mx+2y=-2\\3x-y=5\end{matrix}\right.\)
Cho hệ phương trình \(\left\{{}\begin{matrix}x+\left(m-1\right)y=2\\\left(m+1\right)x-y=m+1\end{matrix}\right.\)
a, giải hệ với m = 1/2
b, Tìm m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn điều kiện x>y
Cho hệ phương trình \(\left\{{}\begin{matrix}\left(m-1\right)x-2y=1\\3x+my=1\end{matrix}\right.\)
a) Giải hệ phương trình khi \(m=\sqrt{3}+1\)
b) Chứng minh rằng hệ phương trình có 1 nghiệm duy nhất với mọi \(m\)
c) Tìm \(m\) để \(x-y\) đạt giá trị nhỏ nhất
cho hệ phương trình: \(\left\{{}\begin{matrix}x-2y=3-m\\2x+y=3\left(m+2\right)\end{matrix}\right.\)
khi hệ phương trình có nghiệm duy nhất là (x,y) tìm m để
a) x>0 và y<0
b) biểu thức A = x^2 + y^2 đạt GTNN
Cho phương trình : \(\left\{{}\begin{matrix}\left(m-1\right)x+y=m\left(1\right)\\x+\left(m-1\right)y=2\left(2\right)\end{matrix}\right.\) có nghiệm duy nhất (x;y)
a) Giải hệ phương trình khi m=3
b) Tìm hệ thức liên hệ giữa x và y ko phụ thuộc vào m
c) Trong trường hợp hệ có nghiệm duy nhất tìm giá trị của m thỏa mãn : 2x2 - 7y = 1
d) Tìm các giá trị của m để biểu thức \(\dfrac{2x-3y}{x+y}\) nhận giá trị nguyên