Đáp án là A.
TXĐ: D = ℝ \ − 1 .
Ta có: y ' = 1 + m x + 1 2
Hàm số đồng biến trên 2 khoảng xác định ⇔ 1 + m > 0 ⇔ m > − 1
Đáp án là A.
TXĐ: D = ℝ \ − 1 .
Ta có: y ' = 1 + m x + 1 2
Hàm số đồng biến trên 2 khoảng xác định ⇔ 1 + m > 0 ⇔ m > − 1
Tìm tất cả giá trị của m để hàm số y = ( m + 1 ) x - 2 x - m đồng biến trên từng khoảng xác định.
A. - 2 ≤ m ≤ 1
B. m > 1 m < - 2
C. - 2 < m < 1
D. m ≥ 1 m ≤ - 2
Cho hàm số y = x + m x − 1 Tìm tất cả các giá trị m để hàm số đồng biến trên từng khoảng xác định của nó
A. m < − 1
B. m ≤ − 1
C. m > 1
D. m > - 1
Tìm tất cả các giá trị của tham số m để hàm số y = x + m x + 1 đồng biến trên từng khoảng xác định.
A. m ≤ 1
B. m > 1
C. m = 1
D. m < 1
Tìm tất cả các giá trị thực của tham số m để hàm số y = x + m x + 1 đồng biến trên từng khoảng xác định của nó
A. m < 1
B. m ≤ 1
C. m = 1
D. m > 1
Tìm giá trị của m để hàm số y = m x 2 + 2 x + 1 x + 1 luôn đồng biến trên từng khoảng xác định của nó
A. 0 < m ≤ 1
B. 0 ≤ m ≤ 1
C. 0 ≤ m < 1
D. 0 < m < 1
Tìm tất cả các giá trị nguyên của tham số m để hàm số y = m 2 x − 4 x − 1 đồng biến trên từng khoảng xác định:
A. m = 1 ; m = 2 ; m = 3
B. m = 0 ; m = − 1 ; m = − 2
C. m = − 1 ; m = 0 ; m = 1
D. m = 0 ; m = 1 ; m = 2
Tìm tất cả các giá trị thực của tham số m để hàm số y = x 2 - m x + 2 x - 1 đồng biến trên từng khoảng xác định của nó
A. m ≥ 3
B. m < 3
C. - 2 2 ≤ m ≤ 2 2
D. m < - 2 2 hoặc m > 2 2
Cho hàm số y = f(x) xác định trên R\{-1}, liên tục trên từng khoảng xác định và có bảng biến thiên như dưới đây:
Tìm tập hợp tất cả các số thực của m để phương trình f(x)=m có nghiệm thực duy nhất
A . ( 0 ; + ∞ ) ∪ - 1
B . ( 0 ; + ∞ )
C . [ 0 ; + ∞ )
D . [ 0 ; + ∞ ) ∪ - 1
Tìm tất cả các giá trị của m để hàm số y = x 3 3 – ( m - 1 ) x 2 + 2 ( m - 1 ) x + 2 đồng biến trên tập xác định của nó là:
A. 1 < m < 3
B. m ≥ 1
C. 1 ≤ m ≤ 3
D. m ≤ 3