\(A=x^2-3x+5=x^2-\frac{3}{2}x-\frac{3}{2}x+\frac{9}{4}+\frac{11}{4}=x\left(x-\frac{3}{2}\right)-\frac{3}{2}\left(x-\frac{3}{2}\right)+\frac{11}{4}\)
\(=\left(x-\frac{3}{2}\right)\left(x-\frac{3}{2}\right)+\frac{11}{4}=\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}\) (với mọi x)
Dấu "=" xảy ra \(< =>x-\frac{3}{2}=0< =>x=\frac{3}{2}\)
Vậy minA=11/4 khi x=3/2
\(B=\left(2x-1\right)^2+\left(x+2\right)^2=4x^2-4x+1+x^2+4x+4\)
\(=5x^2+5\ge5\) (với mọi x)
Dấu "=" xảy ra \(< =>5x^2=0< =>x=0\)
Vậy minB=5 khi x=0
\(A=x^2-3x+5\)
\(=x^2-3x+\frac{9}{4}+\frac{11}{4}\)
\(=\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\)
Vì \(\left(x-\frac{3}{2}\right)^2\ge0\) với mọi x
\(\Rightarrow\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}\)
Vậy GTNN của A là \(\frac{11}{4}\)khi \(x-\frac{3}{2}=0\Leftrightarrow x=\frac{3}{2}\)
b)\(B=\left(2x-1\right)^2+\left(x+2\right)^2\)
\(=4x^2-4x+1+x^2+4x+4\)
\(=5x^2+5\)
Vì \(5x^2\ge o\)với mọi x
\(\Rightarrow5x^2+5\ge5\)
Vậy GTNN của B là 5 khi x=o