\(-x+8\sqrt{x}-17=-\left(\sqrt{x}-4\right)^2-1\le-1\)
\(\Rightarrow y=\dfrac{2}{-x+8\sqrt{x}-17}\ge\dfrac{2}{-1}=-2\)
\(miny=-2\Leftrightarrow x=16\)
\(-x+8\sqrt{x}-17=-\left(\sqrt{x}-4\right)^2-1\le-1\)
\(\Rightarrow y=\dfrac{2}{-x+8\sqrt{x}-17}\ge\dfrac{2}{-1}=-2\)
\(miny=-2\Leftrightarrow x=16\)
Cho \(x,y>0\). Tìm GTNN của biểu thức \(A=\sqrt{x^2+\dfrac{1}{y^2}}+\sqrt{y^2+\dfrac{1}{x^2}}\)
cho x,y>0 thỏa mãn \(2\sqrt{xy}+\sqrt{\dfrac{x}{3}}=1\).Tìm GTNN của P=\(\dfrac{y}{x}+\dfrac{4x}{3y}+15xy\)
cho x,y>0.Tìm GTNN của A=\(\sqrt{\dfrac{x^3}{x^3+8y^2}}+\sqrt{\dfrac{4y^3}{y^3+\left(x+y\right)^3}}\)
Tìm GTNN của A=\(\dfrac{x}{\sqrt{y}}+\dfrac{y}{\sqrt{z}}+\dfrac{z}{\sqrt{x}}\) với x,y,z>0 và \(x+y+z\ge12\)
Cho số thực x; y; z lớn hơn 0 thoả mãn: \(3\sqrt{xy}+2\sqrt{xz}=2\)
Tìm GTNN của \(A=\dfrac{5yz}{x}+\dfrac{7xz}{y}+\dfrac{8xy}{z}\)
Cho các số thực dương x,y,z. Tìm GTNN của biểu thức \(A=\dfrac{x}{y}+\sqrt{\dfrac{y}{z}}+\sqrt[3]{\dfrac{z}{x}}\).
Cho các số thực dương x,y,z. Tìm GTNN của biểu thức \(A=\dfrac{x}{y}+\sqrt{\dfrac{y}{z}}+\sqrt[3]{\dfrac{z}{x}}\).
TÌM GTNN CỦA HÀM SỐ SAU:
a) y=\(\dfrac{x^2+x+2}{\sqrt{x^2+x+1}}\)
TÌM GTLN CỦA HÀM SỐ SAU:
b)y= \(x^2\sqrt{9-x^2}với-3\le x\le3\)
c)y=\(\left(1-x\right)^3\left(1+3x\right)với\dfrac{-1}{3}\le x\le1\)
Cho hai số thực x,y thỏa mãn \(x+y\le1\). Tìm GTNN của
\(M=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\sqrt{1+x^2y^2}\)