\(T=\sqrt{\dfrac{2n^4-4n^3+6n^2-4n+2}{2}}+\sqrt{\dfrac{2n^4+4n^3+6n^2+4n+2}{2}}\)
\(=\sqrt{n^4-2n^3+3n^2-2n+1}+\sqrt{n^4+2n^3+3n^2+2n+1}\)
\(=\sqrt{\left(n^2-n\right)^2+2\left(n^2-n\right)+1}+\sqrt{\left(n^2+n\right)^2+2\left(n^2+n\right)+1}\)
\(=\sqrt{\left(n^2-n+1\right)^2}+\sqrt{\left(n^2+n+1\right)^2}\)
\(=n^2-n+1+n^2+n+1\)
\(=2n^2+2\ge2\)
\(T_{min}=2\) khi \(n=0\)