`A=2x^2+y^2+2x-2y+1`
`A=2x^2+2x+1/2+y^2-2y+1-1/2`
`A=2(x+1/2)^2+(y-1)^2-1/2`
Vì `2(x+1/2)^2+(y-1)^2 >= 0 AA x,y`
`<=>2(x+1/2)^2+(y-1)^2-1/2 >= -1/2 AA x,y`
Hay `A >= -1/2 AA x,y`
Dấu "`=`" xảy ra `<=>{(x+1/2=0),(y-1=0):}<=>{(x=-1/2),(y=1):}`
A = 2x2 + y2 + 2x - 2y + 1
A = [ ( \(\sqrt{2}\) x )2 + 2.\(\sqrt{2}\) x . \(\dfrac{1}{\sqrt{2}}\) + ( \(\dfrac{1}{\sqrt{2}}\))2 ] + ( y2 - 2y + 1) - \(\dfrac{1}{2}\)
A = ( \(\sqrt{2}\) x + \(\dfrac{1}{\sqrt{2}}\) )2 + ( y - 1)2 - \(\dfrac{1}{2}\)
vì ( \(\sqrt{2}\) x + \(\dfrac{1}{\sqrt{2}}\) )2 \(\ge\) 0 ; ( y -1 )2 \(\ge\) 0 \(\Rightarrow\) A \(\ge\) - \(\dfrac{1}{2}\)
A (min) = - \(\dfrac{1}{2}\) dấu bằng xảy ra
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}\sqrt{2}x+\dfrac{1}{\sqrt{2}}=0\\y-1=0\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}\sqrt{2}x=-\dfrac{1}{\sqrt{2}}\\y=1\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=1\end{matrix}\right.\)