A= (x+1)(x+6)(x+2)(x+5)+15= (x2+7x+6)(x2+7x+10)+15
Đặt x2+7x+6= a => x2+7x+10= a+4
=> A= a(a+4)+15= a2+4a+15= (a+2)2+11\(\ge\)11
Vậy MinA= 11
"="<=> a=-2<=> x2+7x+6=-2
<=> \(\left[{}\begin{matrix}x=\frac{-7+\sqrt{41}}{2}\\x=\frac{-7-\sqrt{41}}{2}\end{matrix}\right.\)