a) \(A=x^2-6x+25\)
\(=\left(x^2-6x\right)+25\)
\(=\left(x^2-6x+3^2\right)+16\)
\(=\left(x-3\right)^2+16\)
Ta có \(\left(x-3\right)^2\ge0\\ \Rightarrow\left(x-3\right)^2+16\ge16\)
Dấu ''='' xảy ra \(\Leftrightarrow\left(x-3\right)^2=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\)
Vậy GTNT của A là 16 khi x = 3
a) \(A=x^2-6x+25\)
\(A=x^2-2.x.3+9-9+25\)
\(A=\left(x-3\right)^2+16\)
Vì \(\left(x-3\right)^2\ge0\) với mọi x
\(\Rightarrow\left(x-3\right)^2+16\ge16\)
\(\Rightarrow Amin=16\Leftrightarrow x-3=0\Rightarrow x=3\)
Vậy Amin = 16 <=> x = 3
b) \(B=5x^2-4x+3\)
\(B=5\left(x^2-\dfrac{4}{5}x+\dfrac{3}{5}\right)\)
\(B=5\left(x^2-2.x.\dfrac{2}{5}+\dfrac{4}{25}-\dfrac{4}{25}+\dfrac{3}{5}\right)\)
\(B=5\left(x^2-2.x.\dfrac{2}{5}+\dfrac{4}{25}+\dfrac{11}{25}\right)\)
\(B=5\left(x-\dfrac{2}{5}\right)^2+\dfrac{11}{5}\)
Vì \(5\left(x-\dfrac{2}{5}\right)^2\ge0\) với mọi x
\(\Rightarrow5\left(x-\dfrac{2}{5}\right)^2+\dfrac{11}{5}\ge\dfrac{11}{5}\)
\(\Rightarrow Bmin=\dfrac{11}{5}\Leftrightarrow x-\dfrac{2}{5}=0\Rightarrow x=\dfrac{2}{5}\)
Vậy Bmin = 11/5 <=> x = 2/5
c) \(C=x^2-4xy+5y^2-4y+13\)
\(C=x^2-2.x.2y+\left(2y\right)^2+y^2-2.y.2+4+9\)
\(C=\left(x-2y\right)^2+\left(y-2\right)^2+9\)
Vì \(\left(x-2y\right)^2+\left(y-2\right)^2\ge0\) với mọi x và y
\(\Rightarrow\left(x-2y\right)^2+\left(y-2\right)^2+9\ge9\)
\(\Rightarrow Cmin=9\Leftrightarrow\left\{{}\begin{matrix}x-2y=0\\y-2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=4\\y=2\end{matrix}\right.\)
Vậy Cmin = 9 <=> x = 4 và y = 2