\(A=-2x^2+6x-12\)
\(=-2\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{15}{2}\)
\(=-2\left(x-\dfrac{3}{2}\right)^2-\dfrac{15}{2}\le-\dfrac{15}{2}\)
\(maxA=-\dfrac{15}{2}\Leftrightarrow x=\dfrac{3}{2}\)
Ta có: \(A=-2x^2+6x-12\)
\(=-2\left(x^2-3x+6\right)\)
\(=-2\left(x^2-2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{15}{4}\right)\)
\(=-2\left(x-\dfrac{3}{2}\right)^2-\dfrac{15}{2}\le-\dfrac{15}{2}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{3}{2}\)