\(\dfrac{\sqrt{x}+6}{\sqrt{x}+1}=1+\dfrac{5}{\sqrt{x}+1}\) (\(Đk:x\ge0\))
Ta có: \(\sqrt{x}+1\ge1\Rightarrow\dfrac{5}{\sqrt{x}+1}\le5\)
\(\Rightarrow\dfrac{\sqrt{x}+6}{\sqrt{x}+1}\le1+5=6\)
\(Max\dfrac{\sqrt{x}+6}{\sqrt{x}+1}=6\Leftrightarrow x=0\)
\(\dfrac{\sqrt{x}+6}{\sqrt{x}+1}=1+\dfrac{5}{\sqrt{x}+1}\) (\(Đk:x\ge0\))
Ta có: \(\sqrt{x}+1\ge1\Rightarrow\dfrac{5}{\sqrt{x}+1}\le5\)
\(\Rightarrow\dfrac{\sqrt{x}+6}{\sqrt{x}+1}\le1+5=6\)
\(Max\dfrac{\sqrt{x}+6}{\sqrt{x}+1}=6\Leftrightarrow x=0\)
A=\(\dfrac{\sqrt{x}+1}{2\sqrt{x}-1}+\dfrac{\sqrt{x}}{\sqrt{x}+3}-\dfrac{x+6\sqrt{x}+2}{2x+5\sqrt{x}-3}\) B=\(\dfrac{\sqrt{x}+3}{x+8}\) Tìm GTLN: P=AB
Tìm GTNN của:
a)\(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)
b)\(\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\)
Tìm GTLN của:
\(\dfrac{1}{\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}}}\)
M=\(\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{3-\sqrt{x}}\) ;N=\(\dfrac{\sqrt{x}+2}{\sqrt{x}-3}\)
c) Tìm x để P=\(\dfrac{M}{N}+1\) đạt GTLN
Cho: \(P=\dfrac{3x+3\sqrt{x}-9}{x+\sqrt{x}-2}+\dfrac{\sqrt{x}+3}{\sqrt{x}+2}-\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\)
a, Rút gọn P.
b, Tìm xϵZ để PϵZ.
c, Tìm GTLN của P.
Tìm GTLN của biểu thức:
a. \(A=\dfrac{1}{x-\sqrt{x}+1}\)
b. \(B=\dfrac{2x-2\sqrt{x}+5}{x-\sqrt{x}+2}\)
Tìm GTLN của \(\dfrac{\sqrt{x}-1}{x+\sqrt{x}+2}\)
Tìm GTLN của biểu thức
a) \(A=\dfrac{1}{x-\sqrt{x}+2}\)
b) \(B=\dfrac{2x-2\sqrt{x}+5}{x-\sqrt{x}+2}\)
Cho B = \(\dfrac{6\sqrt{x}+19}{\sqrt{x}+3}\)đk: x >= 0
a) tìm GTLN của B
b) tìm x để B nguyên bé nhất
\(Cho:A=\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)
\(1,\)Rút gọn biểu thức A
\(2,\)Tìm GTLN của A
\(3,\)Tìm \(x\in Q\) để A nhận giá trị nguyên