`[19]`
Vì `(2-x)^2; |2y-7| >=0 forall x in RR`.
`-> (2-x)^2 + |2y-7| >= 0`.
`-> P >= 0 + 3=3`
Dấu bằng xảy ra:
`<=> {(2-x=0), (2y-7=0):}`
`<=> {(x=2),(y=7/2):}`
`[19]`
Vì `(2-x)^2; |2y-7| >=0 forall x in RR`.
`-> (2-x)^2 + |2y-7| >= 0`.
`-> P >= 0 + 3=3`
Dấu bằng xảy ra:
`<=> {(2-x=0), (2y-7=0):}`
`<=> {(x=2),(y=7/2):}`
Tìm GTLN, GTNN của biểu thức sau
\(1,A=\left(x-1\right)^2-10\)
\(2,B=-|x-1|-2\left(2y-1\right)^2+100\)
1.Cho \(r\left(x\right)=-\left(3x-7\right)^2+2\left(3x-7\right)-17\)
Tìm GTLN của biểu thức r(x).
2. So sánh : \(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)với \(B=3^{32}-1\)
3. Tìm x, y biết: \(y^2+2y+4x-2^{x+1}+2=0\)
Cho biểu thức:
B=\(3xy^2\left(x+1\right)-x^2y\left(3y-1\right)-xy\left(3y+x\right)+2x\left(\cdot1-x\right)+2y\left(1-y\right)-2\left(x+y-2016\right)\)\
a) Rút gọn B
b) Tìm cặp số (x;y) để B đạt GTLN và tìm GTLN đó
Bài 1: Tìm GTNN của biểu thức:
\(A=x^2+3x+7\)
\(B=2x^2-8x\)
\(C=x^2-4x+y^2-8y+6\)
\(D=\left(x+1\right)\left(x-2\right)\left(x-3\right)\left(x-6\right)\)
Bài 2: Tìm GTLN của biểu thức:
\(A=11-10x-x^2\)
\(B=-3x\left(x+3\right)-7\)
\(C=5-x^2+2x-4y^2-4y\)
\(D=\left|x-4\right|\left(2-\left|x-4\right|\right)\)
Bài 1: Tìm GTNN của biểu thức sau:
\(A=x^2-20x+103\)
\(B=4x^2+4x-5\)
Bài 2: Tìm GTLN của biểu thức sau:
\(A=-x^2+8x-21\)
\(B=x-1^2\)
Bài 3: CMR giá trị của các biểu thức sau không phụ thuộc vào biến:
a) \(y\left(y^3+y^2-y-2\right)-\left(y^2-2\right).\left(y^2+y+1\right)\)
b) \(\left(2x+3\right).\left(4x^2-6x+9\right)-2.\left(4x^3-1\right)\)
Cho biểu thức A= \(\frac{\left(x^2+y\right)\left(y+\frac{1}{4}\right)+x^2y^2+\frac{3}{4}\left(y+\frac{1}{3}\right)}{x^2y^2+1+\left(x^2-y\right)\left(1-y\right)}\)
a) Tìm đkxđ A
b) Chứng minh A không phụ thuộc vài x
c) Tìm GTNN của A
B1:Cho biểu thức \(A=\left(\dfrac{1}{x+2}-\dfrac{2}{x-2}-\dfrac{x}{4-x}\right):\dfrac{6\left(x+2\right)}{\left(2-x\right)\left(x+1\right)}\)
a. Rút gọn biểu thức A
b. Tìm x để A > 0
c. Tìm x biết \(x^2+3x+2=0\)
d. Tìm x để A đạt GTLN, tìm GTLN đó.
Cho biểu thức\(A=\left(\dfrac{2+x}{2-x}-\dfrac{2-x}{2+x}-\dfrac{4x^2}{x^2-4}\right):\dfrac{x^2-6x+9}{\left(2-x\right)\left(x-3\right)}\)
a. Rút gọn A
b. Tính giá trị của A biết \(\left|x-5\right|=2\)
c. Tìm giá trị nguyên dương của x để A < 4 và A có giá trị là một số nguyên.
1 TÌM GTNN CỦA BIỂU THỨC :
a)A=\(x^2-4x+2023\)
b)B=\(2x^2-x+2019\)
c)C=\(x^2+2y^2+2xy-6y+10\)
d)D=\(\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)
e)E=\(3x^2+8y^2+8xy+8x+2020\)
2 TÌM GTLN CỦA BIỂU THỨC :
a) A=\(-x^2-4x+2020\)
b)B=\(2x-x^2+2020\)
c)C=\(-x^2-2y^2+2xy-6y\)
d)D=\(\left(x+1\right)\left(2-y\right)\left(x-3\right)\left(x-6\right)\)
Bài 4: Cho biểu thức A \(=\left(\dfrac{1}{x+2}-\dfrac{2}{x-2}-\dfrac{x}{4-x^2}\right):\dfrac{6\left(x+2\right)}{\left(2-x\right)\left(x+1\right)}\)
a) Rút gọn A
b)Tìm x để A > 0
c) Tìm x biết x2 + 3x + 2 \(=0\)
d) Tìm x để A đạt GTLN, tìm GTLN đó
1/ Tìm GTNN của:
a/ \(f\left(x\right)=5x^2-2x+1\)
b/ \(P\left(x\right)=3x^2+x+7\)
c/ \(Q\left(x\right)=5x^2-3x-3\)
2/ Tìm GTLN của:
a/ \(f\left(x\right)=-3x^2+x-2\)
b/ \(P\left(x\right)=-x^2-7x+1\)
c/ \(Q\left(x\right)=-2x^2+x-8\)
3/ Cho \(\hept{\begin{cases}x+y+z=0\\xy+yz+xz=0\end{cases}}\). CMR: x = y = z
4/ Chứng minh rằng biểu thức sau viết được dưới dạng tổng các bình phương của hai biểu thức:\(x^2+2\left(x+1\right)^2+3\left(x+2\right)^2+4\left(x+3\right)^2\)