\(A=x^2-4x+4+4\\ =\left(x-2\right)^2+4\ge4\)
Dấu = xảy ra khi
\(x-2=0\\ x=2\)
Vậy \(Min_A=4khix=2\)
\(B=4x^2-2.2\dfrac{1}{4}x+\dfrac{1}{16}+\dfrac{79}{16}\\ =\left(2x-\dfrac{1}{2}\right)^2+\dfrac{79}{16}\ge\dfrac{79}{16}\)
Dấu = xảy ra khi
\(2x-\dfrac{1}{2}=0\\ x=\dfrac{1}{4}\)
Vậy \(Min_B=\dfrac{79}{16}khix=\dfrac{1}{4}\)