\(E=\left(x^2-4x+4\right)-9=\left(x-2\right)^2-9\ge-9\)
\(E_{min}=-9\) khi \(x=2\)
\(E=x^{^{ }2}-4x-5=x^2-2.2x+2^2-9=\left(x-2\right)^2-9\)
=>MIN(E)=-9
dấu '=' xảy ra <=>x-2=0=>x=2
vậy MIN (E)=-9 khi x=2
Ta có: \(E=x^2-4x-5\)
\(=x^2-4x+4-9\)
\(=\left(x-2\right)^2-9\ge-9\forall x\)
Dấu '=' xảy ra khi x=2