\(A^2=2+2\sqrt{\left(3x-5\right)\left(7-3x\right)}\)\(\le2+\left(3x-5\right)+\left(7-3x\right)=4\)
đẳng thức khi 3x-5=7-3x
6x=12=> x=2
A>0 => A=4
maxA=4
Bài này cô si "ngược" là ra rồi =))
ĐKXĐ: \(\frac{5}{3}\le x\le\frac{7}{3}\)
\(A\le\frac{3x-5+1}{2}+\frac{7-3x+1}{2}\)\(=\frac{3x-4+8-3x}{2}=2\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}3x-5=1\\7-3x=1\end{cases}\Leftrightarrow}x=2\)
Vậy \(A_{max}=2\Leftrightarrow x=2\)