\(D=\dfrac{15}{3\left|2x+1\right|+5}\)
Ta có:
\(\left\{{}\begin{matrix}15>0\\3\left|2x+1\right|\ge5\forall x\end{matrix}\right.\)Nên:
\(\Rightarrow D=\dfrac{15}{3\left|2x-1\right|+5}\le3\left(=\dfrac{15}{5}\right)\forall x\)
Dấu "=" xảy ra:
\(\dfrac{15}{3\left|2x+1\right|+5}=3\)
\(\Rightarrow3\left|2x+1\right|+5=5\)
\(\Rightarrow3\left|2x+1\right|=0\)
\(\Rightarrow\left|2x+1\right|=0\)
\(\Rightarrow2x+1=0\)
\(\Rightarrow2x=-1\)
\(\Rightarrow x=-\dfrac{1}{2}\)
Vậy: \(D_{max}=3\) khi \(x=-\dfrac{1}{2}\)
D = \(\dfrac{15}{3.\left|2x-1\right|+5}\) vì |2\(x\) - 1| ≥ 0 ∀ \(x\) ⇒3.|2\(x-1\)| + 5 ≥ 5 ∀ \(x\)
⇒D = \(\dfrac{15}{3.\left|2x-1\right|+5}\) ≤ \(\dfrac{15}{5}\) = 3 dấu bằng xảy ra khi 2\(x\) - 1 =0 ⇒ \(x=\dfrac{1}{2}\)
Kết luận Dmin = 3 ⇔ \(x\) = \(\dfrac{1}{2}\)