`2x^2+6x=2(x^2+3x)=2(x^2+2 . x . 3/2 + 9/4)-9/2=2(x+3/2)^2-9/2`
Ta thấy : `2(x+3/2)^2>=0`
`->2(x+3/2)^2-9/2>=-9/2`
Dấu = xảy ra `<=>x+3/2=0` `<=>x=-3/2`
vậy GTNN của biểu thức là `-9/2` khi `x=-3/2`
Ta có: 2x2-6x=\(2\left(x^2-2.\dfrac{3}{2}x+\dfrac{9}{4}\right)-\dfrac{9}{2}=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\)
Dấu "=" xảy ra <=> \(x-\dfrac{3}{2}=0\Leftrightarrow x=\dfrac{3}{2}\)
Ta có: \(2x^2-6x\)
\(=2\left(x^2-3x\right)\)
\(=2\left(x^2-2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}-\dfrac{9}{4}\right)\)
\(=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{3}{2}\)