Phương trình mx2 + 2(m + 1)x + 1 = 0 (a = m; b = 2 (m + 1); c = 1)
TH1: m = 0 ta có phương trình 2x + 1 = 0
⇔ x = − 1 2 nên nhận m = 0 (1)
TH2: m ≠ 0, ta có = 4(m + 1)2 – 4m.1 = 4m2 + 4m + 4
= 4m2 + 4m + 1 + 3= (2m + 1)2 + 3
Để phương trình đã cho có nghiệm thì
∆ ≥ 0 ⇔ (2m + 1)2 + 3 ≥ 0
⇔ (2m + 1)2 ≥ −3 (luôn đúng với mọi m) (2)
Từ (1) và (92) ta thấy phương trình đã cho có nghiệm với mọi m ∈ ℝ
Đáp án cần chọn là: D