Áp dụng t/c DTSBN:
\(\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{6}=\dfrac{x-y+z}{2-4+6}=\dfrac{8}{4}=2\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=2\Rightarrow x=2.2=4\\\dfrac{y}{4}=2\Rightarrow y=4.2=8\\\dfrac{z}{6}=2\Rightarrow z=6.2=12\end{matrix}\right.\)
\(\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{6}=\dfrac{x-y+z}{2-4+8}=\dfrac{8}{6}=\dfrac{4}{3}\)
⇒\(\left\{{}\begin{matrix}x=\dfrac{4}{3}.2=\dfrac{8}{3}\\y=\dfrac{4}{3}.4=\dfrac{16}{3}\\z=\dfrac{4}{3}.6=8\end{matrix}\right.\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{6}=\dfrac{x-y+z}{2-4+6}=\dfrac{8}{4}=2\)
Do đó: x=4; y=8; z=12