Tìm tất cả các số thực x,y,z thỏa mãn :\(x\sqrt{1-y^2}+y\sqrt{2-z^2}+z\sqrt{3-x^3}=3\)
Tìm tất cả các số thực x,y,z thỏa mãn :\(x\sqrt{1-y^2}+y\sqrt{2-z^2}+z\sqrt{3-x^2}=3\)
Với các số thực x>1, y>2, z>3 thỏa mãn x+y+z= 28 tìm GTLN của biểu thức
\(P=\sqrt{x-1}+2\sqrt{y-4}+3\sqrt{z-9}\)
tìm tất cả các số thực z;y;z thỏa mãn
\(x\sqrt{1-y^2}+y\sqrt{2-z^2}+z\sqrt{3-x^2}=3\)
Tìm các số thực x, y, z thỏa mãn đẳng thức
\(x+y+z+8=2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)
cho x,y,z là các số thực không âm thỏa mãn x+y+z=1.Tìm min
\(T=\left[\frac{\sqrt[3]{x+y+2z}\left(\sqrt{xy+z}+\sqrt{2x^2+2y^2}\right)}{3\sqrt[6]{xy}}\right]\left(x^2+y^2+z^2\right)-2\sqrt{2x^2-2x+1}\)
Chuyên sư phạm hà nội ( 2014)
2. Tìm các số thực: x, y, z thỏa mãn
\(x\sqrt{1-y^2}+y\sqrt{2-z^2}+z\sqrt{3-x^2}=3\)
Tìm các số thực x,y,z thỏa mãn \(\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}=\frac{1}{2}\left(x+y+z\right)\)
cho các số thực x,y,z thỏa mãn 0<=x,y,z<=3
tìm gtnn của A= \(\sqrt{x^2+y^2-2xy}+\sqrt{Y^2-z\left(z-2y\right)}+\sqrt{x^2+z\left(z-2x\right)}\)